THERMOELASTIC STRESSES IN A MULTILAYER PLATE UPON ACTION
OF LASER RADIATION
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The problem of determining thermal stress in a multilayer plate upon action of
a laser flux with Gaussian distribution is solved.

When a radiant flux acts upon a plate, a stress and deformation field is formed within
the plate as a result of the heating produced. Of special interest is the case of stress
and deformation fields in multilayer elements, the materials of which have markedly differ-
ent values of thermal expansion coefficient and modulus of elasticity. In such a case
even for low radiant flux intensity significant temperature stresses develop within the
plate, which may reach the yield point.

In the present study we will assume that the intensity distribution over the cross
section of the laser beam is Gaussian, and that energy absorption occurs on the irradiated
surface. The problem of determining the temperature field in a multilayer plate consisting
of n layers can be reduced to solution of the .thermal conductivity equation with appropriate
initial and final conditions
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where i is the layer number; 1¥i==zzch, with dy being the thickness of the layer with ordinal
k=0
number k (d, = 0), and H being the plate thickness. Carrying out a Hankel transform of Eq.
(1) and initial and final conditions (2), we obtain
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where p is a transform parameter; :=Z/H; e=2Va H; y=p2Va, Ti(p, 2, ) = (T;(r, 2, H)rJo(pr)dr.
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To transform to the original temperture we perform a reverse Hankel transform
T;(r, 2, {) = 4a S’ Ty, 2, Hylo @V a yr)dy. (5)
0
Tt follows from boundary condition (4) at z = 0 that the thermal flux decays experimentally
with increase in the parameter y. The basic contribution to the integral of Eq. (5) is pro-
duced by integration at low y values. Since the integrand contains a Chebyshev-Laguerre
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weight function, we can calculate the integral of Eq. (5) with the quadrature expression
of [1] using a 12-point approximation, with the infinite upper limit replaced by y ~ 3.3.

To find the components of the stress tensor we make use of a system of differential
equations for the displacements u, w in the radial and axial directions [2]:
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where ej =93u;/dr+ uj/r + dwi/dz is the volume expansion. In analogy to [3] we write uj,
wi in the form
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Substituting Egs. (5), (8) in Egs. (6), (7) we obtain a system of equations in the
unknown functions g, @y
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Differentiating Eq. (9) with respect to z and considering Eq. (10):
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We write the solution of this equation in the form
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where Aj, B;j are arbitrary constants. With consideration of Eq. (11), we obtain from Eq.
(9,
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Adding and subtracting Egqs. (11), (12), we obtain a system of two ordinary differential
equations, the solution of which we shall write in the form
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We find the integration constants Aj, Bj, Ci, D;j from the boundary conditions on the
free surfaces of the plate and the merger conditions for displacements and stresses at the
interlayer boundaries
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We write the expressions for the components of the stress tensor (oy;)i, (0z5)i:

(14)

Ju; ow,; Jw; v; ou; U ow; 1+,
)i = Gy L —2), (0. = 2G; L L : —+ i) Ve oot (15)
= O (Gt 5P (o= 26, [ S e (S g ) o]

Substituting Eq. (8) in Eq. (15) with consideration of Eqs. (11), (12) we obtain
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From Eq. (14), by substituting Eqs. (13), (16) we obtain a system of 4n linear algebraic
equations in the unknowns A;, Bj, Cj, Dj:
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where g; = G34,/G3, C; = pCy, Dj = pPDj.
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By solving system (17) we obtain the values Ay, By, Ci, Di as functions of the parame-
ters €, y. Substituting these coefficients in Egs. (13), (16), we obtain the stress tensor
components, while the radial and tangential components are defined by the following expres-
sions:
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where T = ZJZ;. Thus, the problem of thermoelastic stress determination has been reduced
to solution of the thermal conductivity equation in the one-dimensional approximation for
a multilayer plate, Egqs. (3), (4), a system of 4n linear algebraic equations (17), and
calculation of the integrals (16), (18).

Figure 1 shows the dependence of T, the plate surface temperature (z = 0), on radial
coordinate ¥ at various times. The solution was obtained for a two-layer Al-Ni plate (d; =
200 um, d, = 800 um) for parameter values € = 4, a = 4:10° m~2. The quantity W = n1,/a is
the radiant flux power absorbed on the plate surface.

Figure 2 shows the dependence of radial o, and tangential o, components of the stress
tensor on radial coordinate T¥. On the metal contact surface these stresses are negative in
Al, if T < 6. This means that oy, and o,, are compressive. With the passage of time they
increase, even reaching significant values outside the region of laser beam focusing. In
contrast to the contact surface, the rear surface of the plate is in tension near the beam
axis ¥ = 0. With passage of time the stresses 0,, change from positive to negative values.
If the absorbed radiant power exceeds decades of W, the stresses will reach the yield point
of the metals and specimen destruction will occur. Even in this case the temperature at
any point within the plate is less than the melting point of Al or Ni.

Figure 3 shows the dependence of axial ¢,, and tangent 0., stress in the layer contact
plane upon T. The stress o, near the axis ¥ = 0 is compressive and falls off rapidly with
increase in T, transforming to positive values. In contrast to o, and g, outside the
laser beam focusing region the axial stress practically vanishes. Calculations show that
with decrease in the parameter & the axial stress o, increases at an especially high rate.
For example, at time t = 0.1 sec for € = 2 (¢ = 10° m™?) the stresses o,, (MPa) = —0.06 W
(W), opy = —3.85 W, while for € = 4 (a = 4-10° m™?) o0,, = —0.25 W, o0pp = —5.5 W.

Fig. 1. Temperature T of plate face
surface vs radial coordinate T for var-
ious times t: 1) t = 1073%; 2) 1072; 3)
10" sec. T, K; W, W.
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Fig. 2. Stresses op, (a), 0, (b) on layer contact surface
(solid lines) and rear surface (dashes) of two-layer A1-Ni
plate vs radial coordinate T for various times t: 1) t =
10°%; 2) 10"! sec. o, MPa.

Fig. 3. Stresses oy, (a), 0,, (b) on layer contact surface
of two-layer Al1-Ni plate vs radial coordinate T for various
times t: 1) t = 107%; 2) t = 107! sec.

The results obtained can be used to determine limiting thermal flux values which cause
destruction of a multilayer plate when exceeded.

NOTATION

Ti, layer temperature; Aj, kj, thermal conductivity and diffiusivity coefficients; r,
Z; radial and axial coordinates; I,, radiant flux density; J,(x), n-th-order Bessel function
of the first sort; aj, linear expansion coefficient; Gj, vi, shear modulus, Poisson coeffi-
cient.
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